Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
1.
Circ Res ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639096

RESUMO

BACKGROUND: While our understanding of the single-cell gene expression patterns underlying the transformation of vascular cell types during the progression of atherosclerosis is rapidly improving, the clinical and pathophysiological relevance of these changes remains poorly understood. METHODS: Single-cell RNA sequencing data generated with SmartSeq2 (≈8000 genes/cell) in nearly 19 000 single cells isolated during atherosclerosis progression in Ldlr-/-Apob100/100 mice with human-like plasma lipoproteins and from humans with asymptomatic and symptomatic carotid plaques was clustered into multiple subtypes. For clinical and pathophysiological context, the advanced-stage and symptomatic subtype clusters were integrated with 135 tissue-specific (atherosclerotic aortic wall, mammary artery, liver, skeletal muscle, and visceral and subcutaneous, fat) gene-regulatory networks (GRNs) inferred from 600 coronary artery disease patients in the STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task) study. RESULTS: Advanced stages of atherosclerosis progression and symptomatic carotid plaques were largely characterized by 3 smooth muscle cells (SMCs), and 3 macrophage subtype clusters with extracellular matrix organization/osteogenic (SMC), and M1-type proinflammatory/Trem2-high lipid-associated (macrophage) phenotypes. Integrative analysis of these 6 clusters with STARNET revealed significant enrichments of 3 arterial wall GRNs: GRN33 (macrophage), GRN39 (SMC), and GRN122 (macrophage) with major contributions to coronary artery disease heritability and strong associations with clinical scores of coronary atherosclerosis severity (SYNTAX/Duke scores). The presence and pathophysiological relevance of GRN39 were verified in 5 independent RNAseq data sets obtained from the human coronary and aortic artery, and primary SMCs and by targeting its top-key drivers, FRZB and ALCAM, in cultured human vascular SMCs. CONCLUSIONS: By identifying and integrating the most gene-rich single-cell subclusters of atherosclerosis to date with a coronary artery disease framework of GRNs, GRN39 was identified and independently validated as being critical for the transformation of contractile SMCs into an osteogenic phenotype promoting advanced-stage, symptomatic atherosclerosis.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38634280

RESUMO

BACKGROUND: Epigenetic age estimators (clocks) are predictive of human mortality risk. However, it is not yet known whether the epigenetic age of atherosclerotic plaques is predictive for the risk of cardiovascular events. METHODS: Whole-genome DNA methylation of human carotid atherosclerotic plaques (n=485) and of blood (n=93) from the Athero-Express endarterectomy cohort was used to calculate epigenetic age acceleration (EAA). EAA was linked to clinical characteristics, plaque histology, and future cardiovascular events (n=136). We studied whole-genome DNA methylation and bulk and single-cell transcriptomics to uncover molecular mechanisms of plaque EAA. We experimentally confirmed our in silico findings using in vitro experiments in primary human coronary endothelial cells. RESULTS: Male and female patients with severe atherosclerosis had a median chronological age of 69 years. The median epigenetic age was 65 years in females (median EAA, -2.2 [interquartile range, -4.3 to 2.2] years) and 68 years in males (median EAA, -0.3 [interquartile range, -2.9 to 3.8] years). Patients with diabetes and a high body mass index had higher plaque EAA. Increased EAA of plaque predicted future events in a 3-year follow-up in a Cox regression model (univariate hazard ratio, 1.7; P=0.0034) and adjusted multivariate model (hazard ratio, 1.56; P=0.02). Plaque EAA predicted outcome independent of blood EAA (hazard ratio, 1.3; P=0.018) and of plaque hemorrhage (hazard ratio, 1.7; P=0.02). Single-cell RNA sequencing in plaque samples from 46 patients in the same cohort revealed smooth muscle and endothelial cells as important cell types in plaque EAA. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally confirmed by TGFß-triggered endothelial-to-mesenchymal transition inducing rapid epigenetic aging in coronary endothelial cells. CONCLUSIONS: Plaque EAA is a strong and independent marker of poor outcome in patients with severe atherosclerosis. Plaque EAA was linked to mesenchymal endothelial and smooth muscle cells. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally validated. Epigenetic aging mechanisms may provide new targets for treatments that reduce atherosclerosis complications.

3.
Front Immunol ; 15: 1286382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410507

RESUMO

Introduction: The impact of cardiovascular disease (CVD) risk factors, encompassing various biological determinants and unhealthy lifestyles, on the functional dynamics of circulating monocytes-a pivotal cell type in CVD pathophysiology remains elusive. In this study, we aimed to elucidate the influence of CVD risk factors on monocyte transcriptional responses to an infectious stimulus. Methods: We conducted a comparative analysis of monocyte gene expression profiles from the CTMM - CIRCULATING CELLS Cohort of coronary artery disease (CAD) patients, at baseline and after lipopolysaccharide (LPS) stimulation. Gene co-expression analysis was used to identify gene modules and their correlations with CVD risk factors, while pivotal transcription factors controlling the hub genes in these modules were identified by regulatory network analyses. The identified gene module was subjected to a drug repurposing screen, utilizing the LINCS L1000 database. Results: Monocyte responsiveness to LPS showed a highly significant, negative correlation with blood pressure levels (ρ< -0.4; P<10-80). We identified a ZNF12/ZBTB43-driven gene module closely linked to diastolic blood pressure, suggesting that monocyte responses to infectious stimuli, such as LPS, are attenuated in CAD patients with elevated diastolic blood pressure. This attenuation appears associated with a dampening of the LPS-induced suppression of oxidative phosphorylation. Finally, we identified the serine-threonine inhibitor MW-STK33-97 as a drug candidate capable of reversing this aberrant LPS response. Conclusions: Monocyte responses to infectious stimuli may be hampered in CAD patients with high diastolic blood pressure and this attenuated inflammatory response may be reversed by the serine-threonine inhibitor MW-STK33-97. Whether the identified gene module is a mere indicator of, or causal factor in diastolic blood pressure and the associated dampened LPS responses remains to be determined.


Assuntos
Doença da Artéria Coronariana , Hipertensão , Humanos , Doença da Artéria Coronariana/metabolismo , Monócitos/metabolismo , Redes Reguladoras de Genes , Lipopolissacarídeos/farmacologia , Hipertensão/genética , Artérias/metabolismo , Serina/metabolismo , Treonina/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição Kruppel-Like/genética
4.
Circulation ; 149(9): 669-683, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38152968

RESUMO

BACKGROUND: Genetic and experimental studies support a causal involvement of IL-6 (interleukin-6) signaling in atheroprogression. Although trials targeting IL-6 signaling are underway, any benefits must be balanced against an impaired host immune response. Dissecting the mechanisms that mediate the effects of IL-6 signaling on atherosclerosis could offer insights about novel drug targets with more specific effects. METHODS: Leveraging data from 522 681 individuals, we constructed a genetic instrument of 26 variants in the gene encoding the IL-6R (IL-6 receptor) that proxied for pharmacological IL-6R inhibition. Using Mendelian randomization, we assessed its effects on 3281 plasma proteins quantified with an aptamer-based assay in the INTERVAL cohort (n=3301). Using mediation Mendelian randomization, we explored proteomic mediators of the effects of genetically proxied IL-6 signaling on coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease. For significant mediators, we tested associations of their circulating levels with incident cardiovascular events in a population-based study (n=1704) and explored the histological, transcriptomic, and cellular phenotypes correlated with their expression levels in samples from human atherosclerotic lesions. RESULTS: We found significant effects of genetically proxied IL-6 signaling on 70 circulating proteins involved in cytokine production/regulation and immune cell recruitment/differentiation, which correlated with the proteomic effects of pharmacological IL-6R inhibition in a clinical trial. Among the 70 significant proteins, genetically proxied circulating levels of CXCL10 (C-X-C motif chemokine ligand 10) were associated with risk of coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease, with up to 67% of the effects of genetically downregulated IL-6 signaling on these end points mediated by decreases in CXCL10. Higher midlife circulating CXCL10 levels were associated with a larger number of cardiovascular events over 20 years, whereas higher CXCL10 expression in human atherosclerotic lesions correlated with a larger lipid core and a transcriptomic profile reflecting immune cell infiltration, adaptive immune system activation, and cytokine signaling. CONCLUSIONS: Integrating multiomics data, we found a proteomic signature of IL-6 signaling activation and mediators of its effects on cardiovascular disease. Our analyses suggest the interferon-γ-inducible chemokine CXCL10 to be a potentially causal mediator for atherosclerosis in 3 vascular compartments and, as such, could serve as a promising drug target for atheroprotection.


Assuntos
Aterosclerose , Quimiocina CXCL10 , Interleucina-6 , Proteogenômica , Humanos , Aterosclerose/genética , Quimiocina CXCL10/metabolismo , Doença da Artéria Coronariana/genética , Estudo de Associação Genômica Ampla , Interleucina-6/metabolismo , Análise da Randomização Mendeliana , Doença Arterial Periférica , Proteômica , Acidente Vascular Cerebral/genética
5.
bioRxiv ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873248

RESUMO

Atherosclerosis is a chronic inflammatory disease which is driven in part by the aberrant trans -differentiation of vascular smooth muscle cells (SMCs). No therapeutic drug has been shown to reverse detrimental SMC-derived cell phenotypes into protective phenotypes, a hypothesized enabler of plaque regression and improved patient outcome. Herein, we describe a novel function of colchicine in the beneficial modulation of SMC-derived cell phenotype, independent of its conventional anti-inflammatory effects. Using SMC fate mapping in an advanced atherosclerotic lesion model, colchicine induced plaque regression by converting pathogenic SMC-derived macrophage-like and osteoblast-like cells into protective myofibroblast-like cells which thickened, and thereby stabilized, the fibrous cap. This was dependent on Notch3 signaling in SMC-derived plaque cells. These findings may help explain the success of colchicine in clinical trials relative to other anti-inflammatory drugs. Thus, we demonstrate the potential of regulating SMC phenotype in advanced plaque regression through Notch3 signaling, in addition to the canonical anti-inflammatory actions of drugs to treat atherosclerosis.

6.
bioRxiv ; 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37873280

RESUMO

Background: Thromboembolic events secondary to rupture or erosion of advanced atherosclerotic lesions are the leading cause of death in the world. The most common and effective means to reduce these major adverse cardiovascular events (MACE), including myocardial infarction (MI) and stroke, is aggressive lipid lowering via a combination of drugs and dietary modifications. However, little is known regarding the effects of reducing dietary lipids on the composition and stability of advanced atherosclerotic lesions, the mechanisms that regulate these processes, and what therapeutic approaches might augment the benefits of lipid lowering. Methods: Smooth muscle cell (SMC)-lineage tracing Apoe-/- mice were fed a Western diet (WD) for 18 weeks and then switched to a low-fat chow diet for 12 weeks. We assessed lesion size and remodeling indices, as well as the cellular composition of aortic and brachiocephalic artery (BCA) lesions, indices of plaque stability, overall plaque burden, and phenotypic transitions of SMC, and other lesion cells by SMC-lineage tracing combined with scRNA-seq, CyTOF, and immunostaining plus high resolution confocal microscopic z-stack analysis. In addition, to determine if treatment with a potent inhibitor of inflammation could augment the benefits of chow diet-induced reductions in LDL-cholesterol, SMC-lineage tracing Apoe-/- mice were fed a WD for 18 weeks and then chow diet for 12 weeks prior to treating them with an IL-1ß or control antibody (Ab) for 8-weeks. Results: Lipid-lowering by switching Apoe-/- mice from a WD to a chow diet reduced LDL-cholesterol levels by 70% and resulted in multiple beneficial effects including reduced overall aortic plaque burden as well as reduced intraplaque hemorrhage and necrotic core area. However, contrary to expectations, IL-1ß Ab treatment resulted in multiple detrimental changes including increased plaque burden, BCA lesion size, as well as increased cholesterol crystal accumulation, intra-plaque hemorrhage, necrotic core area, and senescence as compared to IgG control Ab treated mice. Furthermore, IL-1ß Ab treatment upregulated neutrophil degranulation pathways but down-regulated SMC extracellular matrix pathways likely important for the protective fibrous cap. Conclusions: Taken together, IL-1ß appears to be required for chow diet-induced reductions in plaque burden and increases in multiple indices of plaque stability.

7.
Arterioscler Thromb Vasc Biol ; 43(12): 2333-2347, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37881937

RESUMO

BACKGROUND: Studies in humans and mice using the expression of an X-linked gene or lineage tracing, respectively, have suggested that clones of smooth muscle cells (SMCs) exist in human atherosclerotic lesions but are limited by either spatial resolution or translatability of the model. METHODS: Phenotypic clonality can be detected by X-chromosome inactivation patterns. We investigated whether clones of SMCs exist in unstable human atheroma using RNA in situ hybridization (BaseScope) to identify a naturally occurring 24-nucleotide deletion in the 3'UTR of the X-linked BGN (biglycan) gene, a proteoglycan highly expressed by SMCs. BGN-specific BaseScope probes were designed to target the wild-type or deletion mRNA. Three different coronary artery plaque types (erosion, rupture, and adaptive intimal thickening) were selected from heterozygous females for the deletion BGN. Hybridization of target RNA-specific probes was used to visualize the spatial distribution of mutants. A clonality index was calculated from the percentage of each probe in each region of interest. Spatial transcriptomics were used to identify differentially expressed transcripts within clonal and nonclonal regions. RESULTS: Less than one-half of regions of interest in the intimal plaque were considered clonal with the mean percent regions of interest with clonality higher in the intimal plaque than in the media. This was consistent for all plaque types. The relationship of the dominant clone in the intimal plaque and media showed significant concordance. In comparison with the nonclonal lesions, the regions with SMC clonality had lower expression of genes encoding cell growth suppressors such as CD74, SERF-2 (small EDRK-rich factor 2), CTSB (cathepsin B), and HLA-DPA1 (major histocompatibility complex, class II, DP alpha 1), among others. CONCLUSIONS: Our novel approach to examine clonality suggests atherosclerosis is primarily a disease of polyclonally and to a lesser extent clonally expanded SMCs and may have implications for the development of antiatherosclerotic therapies.


Assuntos
Aterosclerose , Placa Aterosclerótica , Feminino , Humanos , Camundongos , Animais , Músculo Liso Vascular/metabolismo , Aterosclerose/patologia , Placa Aterosclerótica/patologia , Células Clonais/patologia , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , RNA
8.
J Am Heart Assoc ; 12(21): e030243, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37889192

RESUMO

Background Plaque myofibroblasts are critical players in the initiation and advancement of atherosclerotic disease. They are involved in the production of extracellular matrix, the formation of the fibrous cap, and the underlying lipidic core via modulation processes in response to different environmental cues. Despite clear phenotypic differences between myofibroblast cells and healthy vascular smooth muscle cells, smooth muscle cells are still widely used as a cellular model in atherosclerotic research. Methods and Results Here, we present a conditioned outgrowth method to isolate and culture myofibroblast cells from plaques. We obtained these cells from 27 donors (24 carotid and 3 femoral endarterectomies). We show that they keep their proliferative capacity for 8 passages, are transcriptionally stable, retain donor-specific gene expression programs, and express extracellular matrix proteins (FN1, COL1A1, and DCN) and smooth muscle cell markers (ACTA2, MYH11, and CNN1). Single-cell transcriptomics reveals that the cells in culture closely resemble the plaque myofibroblasts. Chromatin immunoprecipitation sequencing shows the presence of histone H3 lysine 4 dimethylation at the MYH11 promoter, pointing to their smooth muscle cell origin. Finally, we demonstrated that plaque myofibroblasts can be efficiently transduced (>97%) and are capable of taking up oxidized low-density lipoprotein and undergoing calcification. Conclusions In conclusion, we present a method to isolate and culture cells that retain plaque myofibroblast phenotypical and functional capabilities, making them a suitable in vitro model for studying selected mechanisms of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Miofibroblastos/metabolismo , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Artérias Carótidas/metabolismo , Miócitos de Músculo Liso/metabolismo
9.
Atherosclerosis ; 384: 117279, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37805337

RESUMO

Sex differences in coronary artery disease (CAD) presentation, risk factors and prognosis have been widely studied. Similarly, studies on atherosclerosis have shown prominent sex differences in plaque biology. Our understanding of the underlying genetic and molecular mechanisms that drive these differences remains fragmented and largely understudied. Through reviewing genetic and epigenetic studies, we identified more than 40 sex-differential candidate genes (13 within known CAD loci) that may explain, at least in part, sex differences in vascular remodeling, lipid metabolism and endothelial dysfunction. Studies with transcriptomic and single-cell RNA sequencing data from atherosclerotic plaques highlight potential sex differences in smooth muscle cell and endothelial cell biology. Especially, phenotypic switching of smooth muscle cells seems to play a crucial role in female atherosclerosis. This matches the known sex differences in atherosclerotic phenotypes, with men being more prone to lipid-rich plaques, while women are more likely to develop fibrous plaques with endothelial dysfunction. To unravel the complex mechanisms that drive sex differences in CAD, increased statistical power and adjustments to study designs and analysis strategies are required. This entails increasing inclusion rates of women, performing well-defined sex-stratified analyses and the integration of multi-omics data.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Placa Aterosclerótica , Feminino , Humanos , Masculino , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Caracteres Sexuais , Placa Aterosclerótica/genética , Aterosclerose/genética
10.
Sci Rep ; 13(1): 17104, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816779

RESUMO

The accumulation of erythrocyte membranes within an atherosclerotic plaque may contribute to the deposition of free cholesterol and thereby the enlargement of the necrotic core. Erythrocyte membranes can be visualized and quantified in the plaque by immunostaining for the erythrocyte marker glycophorin C. Hence, we theorized that the accumulation of erythrocytes quantified by glycophorin C could function as a marker for plaque vulnerability, possibly reflecting intraplaque hemorrhage (IPH), and offering predictive value for pre-procedural neurological symptoms. We employed the CellProfiler-integrated slideToolKit workflow to visualize and quantify glycophorin C, defined as the total plaque area that is positive for glycophorin C, in single slides of culprit lesions obtained from the Athero-Express Biobank of 1819 consecutive asymptomatic and symptomatic patients who underwent carotid endarterectomy. Our assessment included the evaluation of various parameters such as lipid core, calcifications, collagen content, SMC content, and macrophage burden. These parameters were evaluated using a semi-quantitative scoring method, and the resulting data was dichotomized as predefined criteria into categories of no/minor or moderate/heavy staining. In addition, the presence or absence of IPH was also scored. The prevalence of IPH and pre-procedural neurological symptoms were 62.4% and 87.1%, respectively. The amount of glycophorin staining was significantly higher in samples from men compared to samples of women (median 7.15 (IQR:3.37, 13.41) versus median 4.06 (IQR:1.98, 8.32), p < 0.001). Glycophorin C was associated with IPH adjusted for clinical confounders (OR 1.90; 95% CI 1.63, 2.21; p = < 0.001). Glycophorin C was significantly associated with ipsilateral pre-procedural neurological symptoms (OR:1.27, 95%CI:1.06-1.41, p = 0.005). Sex-stratified analysis, showed that this was also the case for men (OR 1.37; 95%CI 1.12, 1.69; p = 0.003), but not for women (OR 1.15; 95%CI 0.77, 1.73; p = 0.27). Glycophorin C was associated with classical features of a vulnerable plaque, such as a larger lipid core, a higher macrophage burden, less calcifications, a lower collagen and SMC content. There were marked sex differences, in men, glycophorin C was associated with calcifications and collagen while these associations were not found in women. To conclude, the accumulation of erythrocytes in atherosclerotic plaque quantified and visualized by glycophorin C was independently associated with the presence of IPH, preprocedural symptoms in men, and with a more vulnerable plaque composition in both men and women. These results strengthen the notion that the accumulation of erythrocytes quantified by glycophorin C can be used as a marker for plaque vulnerability.


Assuntos
Calcinose , Estenose das Carótidas , Placa Aterosclerótica , Humanos , Feminino , Masculino , Placa Aterosclerótica/patologia , Glicoforinas , Artérias Carótidas/patologia , Hemorragia/patologia , Calcinose/patologia , Membrana Eritrocítica/patologia , Colágeno , Lipídeos , Estenose das Carótidas/patologia , Imageamento por Ressonância Magnética
11.
Arterioscler Thromb Vasc Biol ; 43(10): 1836-1850, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589136

RESUMO

BACKGROUND: Women presenting with coronary artery disease more often present with fibrous atherosclerotic plaques, which are currently understudied. Phenotypically modulated smooth muscle cells (SMCs) contribute to atherosclerosis in women. How these phenotypically modulated SMCs shape female versus male plaques is unknown. METHODS: Gene regulatory networks were created using RNAseq gene expression data from human carotid atherosclerotic plaques. The networks were prioritized based on sex bias, relevance for smooth muscle biology, and coronary artery disease genetic enrichment. Network expression was linked to histologically determined plaque phenotypes. In addition, their expression in plaque cell types was studied at single-cell resolution using single-cell RNAseq. Finally, their relevance for disease progression was studied in female and male Apoe-/- mice fed a Western diet for 18 and 30 weeks. RESULTS: Here, we identify multiple sex-stratified gene regulatory networks from human carotid atherosclerotic plaques. Prioritization of the female networks identified 2 main SMC gene regulatory networks in late-stage atherosclerosis. Single-cell RNA sequencing mapped these female networks to 2 SMC phenotypes: a phenotypically modulated myofibroblast-like SMC network and a contractile SMC network. The myofibroblast-like network was mostly expressed in plaques that were vulnerable in women. Finally, the mice ortholog of key driver gene MFGE8 (milk fat globule EGF and factor V/VIII domain containing) showed retained expression in advanced plaques from female mice but was downregulated in male mice during atherosclerosis progression. CONCLUSIONS: Female atherosclerosis is characterized by gene regulatory networks that are active in fibrous vulnerable plaques rich in myofibroblast-like SMCs.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Placa Aterosclerótica , Feminino , Masculino , Humanos , Camundongos , Animais , Placa Aterosclerótica/patologia , Redes Reguladoras de Genes , Miofibroblastos/metabolismo , Doença da Artéria Coronariana/patologia , Aterosclerose/patologia , Miócitos de Músculo Liso/metabolismo
12.
Circ Res ; 133(7): 542-558, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37646165

RESUMO

BACKGROUND: Using proteomics, we aimed to reveal molecular types of human atherosclerotic lesions and study their associations with histology, imaging, and cardiovascular outcomes. METHODS: Two hundred nineteen carotid endarterectomy samples were procured from 120 patients. A sequential protein extraction protocol was employed in conjunction with multiplexed, discovery proteomics. To focus on extracellular proteins, parallel reaction monitoring was employed for targeted proteomics. Proteomic signatures were integrated with bulk, single-cell, and spatial RNA-sequencing data, and validated in 200 patients from the Athero-Express Biobank study. RESULTS: This extensive proteomics analysis identified plaque inflammation and calcification signatures, which were inversely correlated and validated using targeted proteomics. The inflammation signature was characterized by the presence of neutrophil-derived proteins, such as S100A8/9 (calprotectin) and myeloperoxidase, whereas the calcification signature included fetuin-A, osteopontin, and gamma-carboxylated proteins. The proteomics data also revealed sex differences in atherosclerosis, with large-aggregating proteoglycans versican and aggrecan being more abundant in females and exhibiting an inverse correlation with estradiol levels. The integration of RNA-sequencing data attributed the inflammation signature predominantly to neutrophils and macrophages, and the calcification and sex signatures to smooth muscle cells, except for certain plasma proteins that were not expressed but retained in plaques, such as fetuin-A. Dimensionality reduction and machine learning techniques were applied to identify 4 distinct plaque phenotypes based on proteomics data. A protein signature of 4 key proteins (calponin, protein C, serpin H1, and versican) predicted future cardiovascular mortality with an area under the curve of 75% and 67.5% in the discovery and validation cohort, respectively, surpassing the prognostic performance of imaging and histology. CONCLUSIONS: Plaque proteomics redefined clinically relevant patient groups with distinct outcomes, identifying subgroups of male and female patients with elevated risk of future cardiovascular events.


Assuntos
Aterosclerose , Calcinose , Feminino , Humanos , Masculino , Proteômica , Caracteres Sexuais , Versicanas , alfa-2-Glicoproteína-HS
13.
Biol Sex Differ ; 14(1): 43, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37408072

RESUMO

BACKGROUND AND AIM: Sex differences in atherosclerosis have been described with female plaques being mostly perceived as stable and fibrous. Sex-specific mechanisms such as mosaic loss of the Y chromosome in men have been linked to cardiovascular health. In women, X-linked mechanisms such as X chromosome inactivation (XCI) skewing is common in several tissues. Yet, information on the role of XCI in female atherosclerotic plaques is lacking. Here, we investigated the presence of XCI skewing in advanced atherosclerotic lesions and its association with cardiovascular risk factors, histological plaque data, and clinical data. METHODS: XCI skewing was quantified in 154 atherosclerotic plaque and 55 blood DNA samples of women included in the Athero-Express study. The skewing status was determined performing the HUMARA assay. Then, we studied the relationship of XCI skewing in female plaque and cardiovascular risk factors using regression models. In addition, we studied if plaque XCI predicted plaque composition, and adverse events during 3-years follow-up using Cox proportional hazard models. RESULTS: XCI skewing was detected in 76 of 154 (49.4%) plaques and in 27 of 55 (67%) blood samples. None of the clinical risk factors were associated with plaque skewing. Plaque skewing was more often detected in plaques with a plaque hemorrhage (OR [95% CI]: 1.44 [1.06-1.98], P = 0.02). Moreover, skewed plaques were not associated with a higher incidence of composite and major events but were specifically associated with peripheral artery events during a 3-year follow-up period in a multivariate model (HR [95%CI]: 1.46 [1.09-1.97]; P = 0.007). CONCLUSIONS: XCI skewing is common in carotid plaques of females and is predictive for the occurrence of peripheral artery events within 3 years after carotid endarterectomy.


Sex-differences have been observed in the development of atherosclerosis between men and women. Women tend to have more stable and fibrous plaques compared to men. Sex-specific mechanisms such as mosaic loss of the Y chromosome in men, were associated with cardiovascular health. In women, despite X-linked mechanisms like X chromosome inactivation (XCI) skewing was identified in various tissues. However, its relationship with atherosclerosis has not yet been investigated. In our study, we explored if prevalence of XCI skewing in advanced atherosclerotic lesions related to cardiovascular risk factors, histological plaque data, and clinical information. We found that XCI skewing was present in approximately 50% of human plaques, particularly those with plaque hemorrhage. Interestingly, we did not find any notable relationship between plaque skewing and clinical risk factors. However, we found that XCI was more present in women with peripheral artery events during the 3 years period following carotid endarterectomy. In summary, our findings indicate that XCI skewing is commonly observed in carotid plaques among females and may serve as a predictive factor for the occurrence of peripheral artery events within 3 years after carotid endarterectomy.


Assuntos
Aterosclerose , Placa Aterosclerótica , Feminino , Humanos , Masculino , Inativação do Cromossomo X , Cromossomos Humanos Y , Mosaicismo , Placa Aterosclerótica/patologia , Artérias/patologia
14.
Atherosclerosis ; 384: 117123, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37127497

RESUMO

BACKGROUND AND AIMS: This study aims to identify sex-specific transcriptional differences and signaling pathways in circulating monocytes contributing to cardiovascular disease. METHODS AND RESULTS: We generated sex-biased gene expression signatures by comparing male versus female monocytes of coronary artery disease (CAD) patients (n = 450) from the Center for Translational Molecular Medicine-Circulating Cells Cohort. Gene set enrichment analysis demonstrated that monocytes from female CAD patients carry stronger chemotaxis and migratory signature than those from males. We then inferred cytokine signaling activities based on CytoSig database of 51 cytokine and growth factor regulation profiles. Monocytes from females feature a higher activation level of EGF, IFN1, VEGF, GM-CSF, and CD40L pathways, whereas IL-4, INS, and HMGB1 signaling was seen to be more activated in males. These sex differences were not observed in healthy subjects, as shown for an independent monocyte cohort of healthy subjects (GSE56034, n = 485). More pronounced GM-CSF signaling in monocytes of female CAD patients was confirmed by the significant enrichment of GM-CSF-activated monocyte signature in females. As we show these effects were not due to increased plasma levels of the corresponding ligands, sex-intrinsic differences in monocyte signaling regulation are suggested. Consistently, regulatory network analysis revealed jun-B as a shared transcription factor activated in all female-specific pathways except IFN1 but suppressed in male-activated IL-4. CONCLUSIONS: We observed overt CAD-specific sex differences in monocyte transcriptional profiles and cytokine- or growth factor-induced responses, which provide insights into underlying mechanisms of sex differences in CVD.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Humanos , Masculino , Feminino , Monócitos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Caracteres Sexuais , Interleucina-4 , Citocinas/metabolismo , Transdução de Sinais
15.
medRxiv ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37034659

RESUMO

Background: Genetic and experimental studies support a causal involvement of interleukin-6 (IL-6) signaling in atheroprogression. While trials targeting IL-6 signaling are underway, any benefits must be balanced against an impaired host immune response. Dissecting the mechanisms that mediate the effects of IL-6 signaling on atherosclerosis could offer insights about novel drug targets with more specific effects. Methods: Leveraging data from 522,681 individuals, we constructed a genetic instrument of 26 variants in the gene encoding the IL-6 receptor (IL-6R) that proxied for pharmacological IL-6R inhibition. Using Mendelian randomization (MR), we assessed its effects on 3,281 plasma proteins quantified with an aptamer-based assay in the INTERVAL cohort (n=3,301). Using mediation MR, we explored proteomic mediators of the effects of genetically proxied IL-6 signaling on coronary artery disease (CAD), large artery atherosclerotic stroke (LAAS), and peripheral artery disease (PAD). For significant mediators, we tested associations of their circulating levels with incident cardiovascular events in a population-based study (n=1,704) and explored the histological, transcriptomic, and cellular phenotypes correlated with their expression levels in samples from human atherosclerotic lesions. Results: We found significant effects of genetically proxied IL-6 signaling on 70 circulating proteins involved in cytokine production/regulation and immune cell recruitment/differentiation, which correlated with the proteomic effects of pharmacological IL-6R inhibition in a clinical trial. Among the 70 significant proteins, genetically proxied circulating levels of CXCL10 were associated with risk of CAD, LAAS, and PAD with up to 67% of the effects of genetically downregulated IL-6 signaling on these endpoints mediated by decreases in CXCL10. Higher midlife circulating CXCL10 levels were associated with a larger number of cardiovascular events over 20 years, whereas higher CXCL10 expression in human atherosclerotic lesions correlated with a larger lipid core and a transcriptomic profile reflecting immune cell infiltration, adaptive immune system activation, and cytokine signaling. Conclusions: Integrating multiomics data, we found a proteomic signature of IL-6 signaling activation and mediators of its effects on cardiovascular disease. Our analyses suggest the interferon-γ-inducible chemokine CXCL10 to be a potentially causal mediator for atherosclerosis in three vascular compartments and as such could serve as a promising drug target for atheroprotection.

16.
Sci Rep ; 13(1): 4321, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922520

RESUMO

Tissue segmentation of histology whole-slide images (WSI) remains a critical task in automated digital pathology workflows for both accurate disease diagnosis and deep phenotyping for research purposes. This is especially challenging when the tissue structure of biospecimens is relatively porous and heterogeneous, such as for atherosclerotic plaques. In this study, we developed a unique approach called 'EntropyMasker' based on image entropy to tackle the fore- and background segmentation (masking) task in histology WSI. We evaluated our method on 97 high-resolution WSI of human carotid atherosclerotic plaques in the Athero-Express Biobank Study, constituting hematoxylin and eosin and 8 other staining types. Using multiple benchmarking metrics, we compared our method with four widely used segmentation methods: Otsu's method, Adaptive mean, Adaptive Gaussian and slideMask and observed that our method had the highest sensitivity and Jaccard similarity index. We envision EntropyMasker to fill an important gap in WSI preprocessing, machine learning image analysis pipelines, and enable disease phenotyping beyond the field of atherosclerosis.


Assuntos
Placa Aterosclerótica , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Entropia , Processamento de Imagem Assistida por Computador/métodos , Técnicas Histológicas , Aprendizado de Máquina
17.
bioRxiv ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36798294

RESUMO

Women presenting with coronary artery disease (CAD) more often present with fibrous atherosclerotic plaques, which are currently understudied. Phenotypically modulated smooth muscle cells (SMCs) contribute to atherosclerosis in women. How these phenotypically modulated SMCs shape female versus male plaques is unknown. Here, we show sex-stratified gene regulatory networks (GRNs) from human carotid atherosclerotic tissue. Prioritization of these networks identified two main SMC GRNs in late-stage atherosclerosis. Single-cell RNA-sequencing mapped these GRNs to two SMC phenotypes: a phenotypically modulated myofibroblast-like SMC network and a contractile SMC network. The myofibroblast-like GRN was mostly expressed in plaques that were vulnerable in females. Finally, mice orthologs of the female myofibroblast-like genes showed retained expression in advanced plaques from female mice but were downregulated in male mice during atherosclerosis progression. Female atherosclerosis is driven by GRNs that promote a fibrous vulnerable plaque rich in myofibroblast-like SMCs.

18.
Sci Rep ; 13(1): 1010, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653383

RESUMO

Extracellular vesicles (EV) are a novel biomarker source for diagnosis and prognosis of cardiovascular disease. A protein comparison of plasma EVs in relation to blood plasma and atherosclerotic plaque has not been performed but would provide insight into the origin and content of biomarker sources and their association with atherosclerotic progression. Using samples of 88 carotid endarterectomy patients in the Athero-Express, 92 proteins (Olink Cardiovascular III panel) were measured in citrate plasma, plasma derived LDL-EVs and atherosclerotic plaque. Proteins were correlated between sources and were related to pre-operative stroke and 3-year major adverse cardiovascular events (MACE). Plasma and EV proteins correlated moderately on average, but with substantial variability. Both showed little correlation with plaque, suggesting that these circulating biomarkers may not originate from the latter. Plaque (n = 17) contained most differentially-expressed proteins in patients with stroke, opposed to EVs (n = 6) and plasma (n = 5). In contrast, EVs contained most differentially-expressed proteins for MACE (n = 21) compared to plasma (n = 9) and plaque (n = 1). EVs appear to provide additional information about severity and progression of systemic atherosclerosis than can be obtained from plasma or atherosclerotic plaque.


Assuntos
Aterosclerose , Endarterectomia das Carótidas , Vesículas Extracelulares , Placa Aterosclerótica , Acidente Vascular Cerebral , Humanos , Placa Aterosclerótica/metabolismo , Artérias Carótidas/metabolismo , Biomarcadores , Proteínas , Vesículas Extracelulares/metabolismo
19.
J Lipid Res ; 64(2): 100325, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592658

RESUMO

Lysoplasmalogens are a class of vinyl ether bioactive lipids that have a central role in plasmalogen metabolism and membrane fluidity. The liver X receptor (LXR) transcription factors are important determinants of cellular lipid homeostasis owing to their ability to regulate cholesterol and fatty acid metabolism. However, their role in governing the composition of lipid species such as lysoplasmalogens in cellular membranes is less well studied. Here, we mapped the lipidome of bone marrow-derived macrophages (BMDMs) following LXR activation. We found a marked reduction in the levels of lysoplasmalogen species in the absence of changes in the levels of plasmalogens themselves. Transcriptional profiling of LXR-activated macrophages identified the gene encoding transmembrane protein 86a (TMEM86a), an integral endoplasmic reticulum protein, as a previously uncharacterized sterol-regulated gene. We demonstrate that TMEM86a is a direct transcriptional target of LXR in macrophages and microglia and that it is highly expressed in TREM2+/lipid-associated macrophages in human atherosclerotic plaques, where its expression positively correlates with other LXR-regulated genes. We further show that both murine and human TMEM86a display active lysoplasmalogenase activity that can be abrogated by inactivating mutations in the predicted catalytic site. Consequently, we demonstrate that overexpression of Tmem86a in BMDM markedly reduces lysoplasmalogen abundance and membrane fluidity, while reciprocally, silencing of Tmem86a increases basal lysoplasmalogen levels and abrogates the LXR-dependent reduction of this lipid species. Collectively, our findings implicate TMEM86a as a sterol-regulated lysoplasmalogenase in macrophages that contributes to sterol-dependent membrane remodeling.


Assuntos
Macrófagos , Esteróis , Animais , Humanos , Camundongos , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Receptores Imunológicos , Esteróis/metabolismo , Fatores de Transcrição/metabolismo
20.
Eur J Vasc Endovasc Surg ; 65(5): 700-709, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36708756

RESUMO

INTRODUCTION: Carotid plaque intraplaque haemorrhage (IPH) is associated with future cardiovascular events. It was hypothesised that plasma proteins associated with carotid plaque IPH are also likely to be associated with major adverse cardiovascular events (MACE) after carotid endarterectomy (CEA). METHODS: In pre-operative blood samples from patients undergoing CEA within the Athero-Express biobank, proteins involved in cardiovascular disease were measured using three OLINK proteomics immunoassays. The association between proteins and IPH was analysed using logistic regression analyses. Subsequently, the association between the IPH associated plasma proteins and the three year post-operative risk of MACE (including stroke, myocardial infarction, or cardiovascular death) was analysed. RESULTS: Within the three year follow up, 130 patients (18.9%) of 688 symptomatic and asymptomatic patients undergoing CEA developed MACE. Six of 276 plasma proteins were found to be significantly associated with IPH, from which only lipoprotein lipase (LPL) was associated with the post-operative risk of MACE undergoing CEA. Within the 30 day peri-operative period, high plasma LPL was independently associated with an increased risk of MACE (adjusted hazard ratio [HR] per standard deviation [SD] 1.60, 1.10 - 2.30), p = .014). From 30 days to three years, however, high LPL was associated with a lower risk of MACE (adjusted HR per SD 0.80, 0.65 - 0.99, p= .036). CONCLUSION: High LPL concentrations were found to be associated with a higher risk of MACE in the first 30 post-operative days but with a lower risk MACE between 30 days and three years, meaning that LPL has different hazards at different time points.


Assuntos
Estenose das Carótidas , Endarterectomia das Carótidas , Infarto do Miocárdio , Placa Aterosclerótica , Acidente Vascular Cerebral , Humanos , Endarterectomia das Carótidas/efeitos adversos , Lipase Lipoproteica , Fatores de Risco , Medição de Risco , Resultado do Tratamento , Acidente Vascular Cerebral/etiologia , Hemorragia/etiologia , Infarto do Miocárdio/etiologia , Placa Aterosclerótica/cirurgia , Estenose das Carótidas/complicações , Estenose das Carótidas/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...